Interspecific combative interactions between wood-decaying basidiomycetes.

نویسنده

  • Boddy
چکیده

Competition is the most common type of interaction occurring between wood-decaying higher fungi. Since competition for nutrients in organic resources is effectively brought about by competition for space, the common division into interference and exploitation competition is not very appropriate. Fungal competition can be divided into primary resource capture (obtaining uncolonized resources) and secondary resource capture (combat to obtain resources already colonized by other fungi). Combative mechanisms include antagonism at a distance, hyphal interference, mycoparasitism and gross mycelial contact. Interactions can result in deadlock or replacement, and a hierarchy of combative ability can be discerned amongst fungi that inhabit particular resources, but within this hierarchy there exists intransitivity, modification of outcome by other species and abiotic variables. Interactions can dramatically alter mycelial function, and have potential as biological control agents of fungal pathogens of trees and in service timber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Armed and dangerous e Chemical warfare in wood decay communities

Fungal community structure and development in decaying woody resources are largely dependent on interspecific antagonistic interactions that determine the distribution of territory e and hence the nutrients within e between different individuals occupying that resource. Interactions are mediated by antagonistic mechanisms, which determine the combative outcome: either deadlock, where neither my...

متن کامل

Xenomic networks variability and adaptation traits in wood decaying fungi

Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matte...

متن کامل

Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA.

We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomyc...

متن کامل

Plant-polysaccharide-degrading enzymes from Basidiomycetes.

SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for asc...

متن کامل

Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.

Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology ecology

دوره 31 3  شماره 

صفحات  -

تاریخ انتشار 2000